Seating Arrangement Problem:

Sorting Out Children by Sorting Out Digraphs

By Tony Leguia


```
Problem 5: Mandatory Seating The final addition to the problem was to allow the user to define additional preconditions to the lay seating location- vertex must sit
Seating location restrictions- vertex cannot sitit in this location
Enforced neighbor-vertex must sit next to specified vertices
Prohibited neighbor-vertex cannot next to specified vertices
Because of the nature of allowing the user to define the restrictions and configurations
```



``` it one prohibits a vertex from siting next to any of its friends, and there are not enough vericics
to which this vertex is indifferent towards, there would be no possible seating arrangement.
```

Conclusions and Future Work:
At the moment our program looks at all possible arrangements of the vertices in G . This gives
our rogram a worst case runtime of 0 (n.!). It might be possible to ootimize or provide the program with heuristics that allow for a more time efficient untime. We would also like to program with heuristics that allow for a more time efficient runtime. We would also ike to
develop tomal proofs sor our conjectures. Additionally, we would like to further characterize
how restrictions and seating requirements ((roblem 5) affect the seating arrangements of develop tormal proifs or our conjectures. Additionally, we would ike to turner characterize
how restrictions and seating requirements (Problem 5) affect the seating arrangements of
graphs.

Acknowledgements:
Dr. Sean McCulloch for his help, advice and mentoring.
Ohio Wesleyan University for providing this research opportunity and the facilities and
resources that made this research possible.
resources that made this research possible.
The NSF for providing the funding that made

